
JOURNAL OF COMPUTATIONAL PHYSICS 27, 180-191 (1978) 

A Numerical Method for the Evaluation of an Equilibrium 

Configuration of a Toroidal Pinch 

BERNHARD STEFFEN 

Lehrstiihle fiir numerische und angewandre Mathematik, Unicersiiiit Gottingen, West Germany 

Received March 16, 1976; revised May 3, 1977 

The equilibrium condition for a toroidal pinch is formulated as a nonlinear operator 
equation for the parameter functions representing the plasma boundary. This operator 
equation is transformed into an optimization problem, and a finite-dimensional approxima- 
tion to the optimization problem is given which is treated by an algorithm proposed by 
Brent (“Algorithms for Minimization without using Derivatives,” Prentice-Hall, Englewood 
Cliffs, N.J., 1973). This procedure turns out to be numerically stable and reasonably fast. 
This approach may easily be generalized to treat a variety of free boundary problems in 
two and three dimensions. 

1. INTRODUCTION 

Equilibrium configurations of plasma containment devices have received consider- 
able attention during the last two decades, under computational [l, 3, 6-9, 13,20,21] 
as well as theoretical [16, 18, 191 aspects. While the older computations assume the 
plasma pressure to be continuous, the actual pressure gradients are so large [8, 121 
that it seems natural to introduce surfaces of discontinuous pressure into the mathe- 
matical model. The problem then consists of computing the exact position of the 
discontinuity. This problem has been treated in [3,9, 191. We now develop a new 
numerical method for solving this problem for a hydrodynamical model of the 
toroidal pinch with surface current. To keep computing time down we restrict the 
computations to the case of rotational symmetry. We then obtain the equilibrium 
condition as the solution of a nonlinear optimization problem which is solved 
iteratively. 

In contrast to [3, 9,201 we use integral equation methods to solve the differential 
equation part of the problem. The respective merits of finite elements and integral 
equations have frequently been discussed, in the present situation the latter have 
two definite advantages: They require less storage capacity, and in the case of 
rotational symmetry with analytic boundaries we easily get very high order dis- 
cretization formulas and therefore rapid convergence with an increasing number of 
points. 

For the parameters representing the free boundary we choose the coefficients of a 
cosine series of a radius length (see Fig. 2) thus ensuring analyticity of every trial 
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boundary. This method seems superior to a representation by a certain number of 
points on the boundary. 

The optimization procedure we used converges somewhat faster than the steepest 
descent method in [3], which is comparable with the procedure used in [20]. It could 
probably be incorporated in the method of [3] without too much effort. One drawback 
of our procedure relative to the one in [3] is that it is unable to distinguish between 
stable and unstable configurations, so stability has to be tested separately. 

2. THE TOROIDAL PINCH 

The setup of the toroidal pinch is the following (for a more detailed description 
see [lo]): A plasma P with surface S, is separated from a toroidal ideal conductor S, 
by a vacuum region V. Currents flowing on S, and S, induce magnetic fields B in P 
and B’ in I/ such that the gas pressure p of the plasma is balanced by the magnetic 
pressure of the field B’. For our computations, the configuration is assumed to have 
rotational symmetry with respect to the y-axis, so its geometry is uniquely defined by 
the intersections C, and C, of S, and S, with the half plane {(x, y, 0) 1 x > 0} C R3. 
We further assume the curves Ci , i = 1,2, to have a representation by parameter 
functions 

Xi(#) = Mi + ri($q * cos 4, 

Vi(4) = r,(4) * sin 4, i = 1,2, 
(2.1) 

with Mi E R+, ri E C& , ri(+) > 0 ‘J$ E [0, 27r], where M, and r, are given while Ml 
and rl have to be determined (see Figs. 1,2). 

The magnetic fields are determined by the following equations [2, 151: 

rotB = 0 in P, (2.2) 
div B = 0 in P, (2.3) 

gradp = 0 in P, (2.4) 
h , B) = 0 in S, , (2.5) 

(rzl , B’) = 0 in S, , (2.6) 
rot B’ = 0 in V, (2.7) 
div B’ = 0 in V, cw 

(n2, B’) = 0 in S, , (2.9) 

where n, is the normal to S, and n2 to SZ . 
From [4, 51 we have the following characterization of the fields B and B’: Let 

d(x, y, z) : = {x2 + z2>‘12 and e be the azimuthal unit vector: 

44 y, 2) = C-z, 0, x)/d; (2.10) 
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FIG. 1. Geometry of the toroidal pinch. V: Vacuum region; P: plasma region; S, : plasma 
boundary; S, : outer conductor. 

FIG. 2. 

x 

w 
Cross section of a toroidal pinch. 

then 

B = t/(27rd) . e in P (2.11) 

and 

B’ = t’/(2nd) . e + B in V, (2.12) 

where t, t’ E R and B is a purely meridional field in V with vanishing normal com- 
ponent on S, and S, . 

B is uniquely determined by a flow condition: Let I be the total azimuthal current 
in the plasma surface S, ; c, the vacuum speed of light; and dsi , the line element on Ci , 
i = 1,2. Then we have 

(cl4n) SC, @, &) = 1, i = 1,2. (2.13) 

The configuration is in an equilibrium state if the magnetic field just balances the gas 
pressure: 

B2 - B’= +- 837~ = 0 on S, (2.14) 
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or, using (2.1 I), (2.12) 

1 B j = (87rp - (P - t2)/(27r42}1/2 on s, . (2.15) 

Our problem now is the following: Let p, t, t’, I, and the shape of S, be given. 
Find an admissible shape of S, such that the field B defined in Y as above fulfills the 
equilibrium condition (2.15). 

Admissible are such shapes that 

(1) S, is entirely interior to S, , and 
(2) The curve C, has a representation as given in (2.1). As B and d depend 

on the shape of S, , (2.15) thus gives an operator equation for the determination of MI 
and rl . The fact that MI and r, are not uniquely determined by the shape of S, is of 
minor importance here; we may eliminate this multiplicity later on by fixing MI to a 
suited value. 

For the numerical treatment we reformulate the problem as follows: Let 

F(M, , rl) := 11 1 B 1 - (87rp + (f2 - t2)/(2~d))1/2 II2 ; (2.16) 

then we are looking for a pair (MI, r’J minimizing F under all admissible pairs 
(MI , rI). Clearly, if F(W1, r’,) = 0, we have a solution to the equilibrium problem; 
if not, such a solution does not exist. 

3. THE EVALUATION OF B 

For the evaluation of the equilibrium condition (2.15) we need only know the values 
E takes along the curve C, . To get these, we use a numerical procedure developed in 
[4] which can be shown to converge with the methods of [22]. Let 

where . denotes the derivative with respect to 4. Then the functions wi are the unique 
solutions of the system of integral equations 

together with the uniqueness condition 

(3.2) 

(3.3) 

and every solution of (3.2) and (3.3) gives a field which can be found by an integrating 
process. 
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The kernels Kij are defined by 

x xj<+‘> .d# 
For i # j the kernel Kij is continuous, and for i = j it may be split into 

Kii(+, c$‘) = K,‘,(+, 4’) + Kii(+, 4’) . In (4 sin2 (’ 2 “) ), 

where K’, K” are continuous. 
This system of integral equations can be discretized through a quadrature formula 

with equally spaced abscissas as proposed in [14], which exhibits rapid convergence 
if C, and C, are analytic curves. 

4. THE CONTINUITY OF THE FUNCTION F 

To show the continuity of F we only have to show that w1 depends continuously on 
the choice of r, in some proper sense. We define 

lifll” = llfllm + llf’ /la + If” I/m VfE c&. 

LEMMA 4.1. Let MI be fixed, rtl such that C’, n C, = a, where C’, is the curve 
* given by MI and rll , then there are constants 6 > 0; L, , L, , L, < 03 such that 

for all r, with 11 rl - rll /I” < 6 we have 

II Kii - G Ilm < L, . II rl - rll Ii”, i,j = 1,2, i #j, (4.1) 

I &1(4, 4’) - K,(A 4’11 

< /I rl - rll /IN * L, + L, * In 4 sin2 f I ( (9 - 6’) 2 
111 

, 

K22 = K22 : (4.3) 

where K’ is the kernel belonging to MI , rll and K the kernel belonging to MI , rl . 

We introduce some notation: 
Let v = (v, , vJ, vi E C[O, 2~1, i = 1,2, and v’ the same; then we define 

(I!, 2") := g1 jo2n Vj($> * Ui'(4) . d4, 

II v II2 :== G-5 v2, 

I/ v Ilm := max(ll v1 IL , II v2 IL>. 
(4.5) 
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LEMMA 4.2. Let rrI be as before, with vrl the solution of the integral equation (3.2) 
under the uniqueness condition 

II V’l II2 = 1; 

then there exist constants S > 0 and H < co, such for all rl with I/ r1 - rll 11” < S we 
have 

II u - v’ IL < H . Ii r1 - rrl II”, (4.6) 

where v is the solution of (3.2) to rl . 

Proof. In [ll] solutions of (3.2) are proved to be Holder continuous with 
exponent 4, and an examination of that proof shows the Holder constant to be a 
continuous function of r, . Therefore the solutions v are for all r, with 11 rl - rll jj < S 
equally Holder continuous, and we get a constant HI < co such that 

1 jo2’ ~~(4’) - In (4 - sin2 ( ” 2 ’ )) - d4’ 1 < HI , 4 E LO, 24, j = 1,2, 

(4.7) 
with HI not depending on rl . This together with Lemma 4.1 gives us the existence 
of a constant H, < co such that 

(Kij - Kij) - vj * d$’ /I < H, . (1 rl - r’., 11”. 
2 

(4.8) 

Now v and v’ are solutions of (3.2) and therefore 

l’i - 

Now let 

Adding (1 - 

V'i = & i j 2n (Kij - Kij) Vj + Kij(Vj - V’j) d+‘, i = 1,2. (4.9) 
3=1 0 

v = a*v'+p*Z1 with (fi, v’) = 0, II fi I12 = 1. (4.10) 

a) - v’ on either side of (4.9) we get 

Because 1 is a simple eigenvalue of (3.2) [14] and the integral operator is compact, 
there exists an E > 0 such that for all g with ( g, v’) = 0 we have 

(4.12) 
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so we conclude from (4.11) 

(4.13) 

(4.14) 

and because of m2 + p2 = 1 there exists an I& such that 

11 v’ - v II2 = (1 - CX)” + B” d H3 . II r, - r’l 11”. (4.15) 

Now v - v’ is a Holder continuous function with Holder exponent & and a Holder 
constant not depending on r, , so there exists a constant H4 < co depending only 
on rll and such that 

II v - v’ llm < fb . II v - u’ II2 Vr,: 11 r1 - r’l I]’ < 8. (4.16) 

We now can prove our final result: 

THEOREM 4.3. Let 2; be the solution of (3.2) under the uniqueness condition (3.3); 
then fi depends continuously on r1 . 

Proof. 

ijzu.1 
/~joZ” V2(d> 41. (4.17) 

As a solution of a homogeneous Neumann problem is by definition continuous and 
has vanishing divergence, vI and v2 have no change of sign; thus 

/ 1”” vi<+> d4 j = 6’ I vdd>l 4, i = 1,2. 
0 

(4.18) 

Because of Lemma 4.2 the integral depends continuously on H, it is strictly positive 
and thus 

V /!l” 

depends continuously on rl , which proves the theorem. 

5. THE MINIMIZING PROBLEM 

For the numerical solution we have to construct a finite-dimensional approximation 
of the problem. 
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We set 

rl = i ai cos i$; (MI , rI) admissible . 
0 I 

(5.1) 

Each element of A” represents a different curve C, , but unless n is small, large changes 
in the coefficients i’kfr , a, ,..., a, may result in only small changes in the geometry 
of the curve. A” is therefore not a set in which to solve the optimization problem, 
but it is suited to fix MI . We choose n” small, e.g., IZ” = 2, and solve the optimization 
problem in A”“. Let (M” , r”) be the solution of this optimization problem. We may 
expect that we may now look for an optimal solution of the form (M” , r,), r, E Ci,, . 

We now choose n > n”, define 

A” : = (44;‘) rl) j 
i 

rl = i ai cos id; (M;’ , rl) admissible . 
0 I 

(5.2) 

Again each element of A” represents exactly one curve C, , but now small changes 
in the geometry of the curve are caused by only small changes of the parameters 
4J ,..., a . and therefore we can hope to solve the optimization problem with respect n 2 
to An regardless of the magnitude of n, and to get convergence as n increases. This 
convergence may be tested entirely in terms of convergence of the coefficients. 

We now have to minimize the function F, which is a measure for the deviation from 
equilibrium, over An, which may be considered a subset of Rn+l. Thus we have a 
nonlinear optimization problem with nonlinear restrictions. Actually we know from 
physics that for any setup the equilibrium configuration is such that the distance 
between C, and C, is strictly positive, the curvature of C, is uniformly bounded, and 
for a proper choice of MI the function y1 is strictly positive, so the solution of the 
minimizing problem is in the interior of the set of admissible values a, ,..., a, , and 
we do not have to bother with the restrictions if only we choose our starting point 
carefully and make sure that any search steps taken are not too large. 

The accuracy to which a solution is found depends, naturally, on the accuracy to 
which the function F is computed. The procedure of [14] gives us values of 1 B / at 
2m different points on C, , of which, because of the symmetry of the setup with respect 
to x-z-plane, only m + 1 are independent. 

For a sufficiently smooth setups, e.g., C, a circle, C, slightly distorted from a circle, 
m > 2n appeared to warrant a sufficient accuracy of the function F to use the full 
accuracy of the minimizing procedure, while for more complex geometries a larger 
choice of m was needed. The choice m = n was tested, too. This means treating 
directly the discretized operator equation of the equilibrium problem without intro- 
ducing the optimization concept. This procedure proved to be highly unstable, and 
proper results could not be obtained. 

For the minimization procedure we tested the version of the D-F-P-algorithm 
given in [17], where the derivatives were replaced by difference quotients, and an 
algorithm of Brent [5] not using derivatives. The latter proved superior in speed and 
accuracy. The reason for this seems to be the numerical errors in the calculated 
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derivatives in the D-F-P-algorithm. All final results were therefore calculated with the 
procedure of [5]. The parameters of the procedure were adjusted as follows: The 
problem was supposed to be well conditioned, to be possibly badly scaled and the 
maximum step size was overestimated about twice, which proved to give the fastest 
convergence. 

To improve the scaling of the problem we made the following change: Instead of 
the ai, i = O,..., n, we used parameters bi = ai . Si, i = O,..., n, with the result that 
the optimal parameters were all of the same magnitude. The value 8 was chosen to 
avoid rounding errors. 

6. THE RESULTS 

Computations have been done for a variety of different geometries and different 
values of the parameters t, t’, and p, choosing n = 5 and m = 12 in most cases. All 
computations have been done on the Univac 1108 of the GWD Gdttingen in single 

TABLE I 

Number 

l/c 

P 
t 

t’ 

la lb lc 2a 2b 2C 

1. 1. 1. 1. 1. 1. 

10. 20. 30. 10. 20. 30. 

0. 0. 0. 0. 0. 0. 

0. 0. 0. 0. 0. 0. 

3a 3b 3c 

1. 1. I. 

5. 10. 15. 

1.3333 2.6667 4. 

2. 4. 6. 

Mz 1. 1. 1. 1. 1. I. I. I. 1. 

bo 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 

b, 0.0 0.0 0.0 0.03 0.03 0.03 0.0 0.0 0.0 

Ml 1.0188 1.0285 1.0362 1.0188 1.0218 I .0340 1.0090 1.0190 1.0258 

a0 0.1262 0.0892 0.0723 0.1262 0.0892 0.0728 0.1853 0.1360 0.1156 

al 0.0012 0.0006 -0.0002 0.0011 0.0008 0.0003 -0.0007 0.0011 0.0008 

a2 -0.0008 -0.0005 -0.0004 -0.0008 -0.0005 -0.0004 -0.0008 -0.0011 -0.0011 

a3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fill B II2 1.4” 
10-b 

a See Fig. 3a. 
b See Fig. 3b. 
c See Fig. 3c. 

8.” 8.” 4.” 5? 1.6b 1.2” 5.4” 2.4c 

10-o 10-e 10-S 10-e 10-B IO-4 10-j 10-j 



EQUILIBRIUM OF A TOROIDAL PINCH 189 

precision (27 bits of the mantissa). In equilibrium, the plasma torus always has an 
almost circular cross section even if the cross section of the conductor is far from 
being circular, and its major axis is shifted outward from the major axis of the 
conductor. This shift is such that the two rings which the vacuum region cuts out of 
the x-z plane have approximately the same area. Stability tests have been performed 
with the equilibrium configurations obtained using the method of [15]. They showed 
the equilibrium configurations to be slightly more stable than neighboring configu- 
rations, but the difference is not very significant. For some results see Table I and 
Fig. 3. 

a 

C 

FIG. 3. Conductor and plasma boundary cross sections to the tor and plasma boundary cross sections to the examples of Table I. 



190 BERNHARD STEFFEN 

7. POSSIBLE EXTENSIONS 

The computations may easily be generalized to a fully three-dimensional configu- 
ration. The integral equation (3.2) is just a special case of a three-dmiensional integral 
equation (see [14]), and an analogous representation to (5.1) and (5.2) may easily 
be given for a torus without rotational symmetry. Unfortunately, the integral equation 
then is no longer a scalar one. 

Another possible extension could be the treatment of a diffuse boundary in the form 
of a set of nested sharp boundaries. In this case we have plasma boundaries Si, 
i = l,..., n, such that Si is completely interior to S i+l. The magnetic field B is given by 
B = B" + B1 + ... + B", where Bi = P/(2&) . e + Bi, analog to (2.11) (2.12) 
with B” vanishing; and (2.14) is replaced by 

(,f,py-(~B~)2--8~dlp =0 onSi, 

where dip is the pressure jump accross the ith surface. 
As all the boundaries Si lie close to each other, the evaluation of their coefficients 

takes much less time than the determination of n totally different boundaries and may 
in some instances even be done by interpolation. The determination of the distribution 
of the pressure jumps and the azimuthal current on the different surfaces has to be 
done separately. 
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